News Solartex
No Result
View All Result
No Result
View All Result
News Solartex
No Result
View All Result
Home Solar Panels

Osmium dye boosts long wavelength solar hydrogen output

admin by admin
09/01/2026
in Solar Panels
0
Osmium dye boosts long wavelength solar hydrogen output
0
SHARES
4
VIEWS
Share on FacebookShare on Twitter


by Riko Seibo

Tokyo, Japan (SPX) Jan 09, 2026






Generating hydrogen from sunlight offers a route to low carbon fuel production by converting solar energy into chemical energy stored in hydrogen. Researchers use photocatalysts to absorb light and drive water splitting into hydrogen and oxygen, but many existing systems only harvest part of the visible spectrum, leaving much of the incoming solar energy unused. To increase solar-to-hydrogen efficiency, researchers are investigating photocatalysts that respond to a broader range of visible wavelengths.



A team led by Professor Kazuhiko Maeda and graduate student Haruka Yamamoto at the Institute of Science Tokyo has developed a dye-sensitized photocatalyst that absorbs long-wavelength visible light up to about 800 nanometers. The study, published in ACS Catalysis on December 5, 2025, reports up to a twofold increase in solar-to-hydrogen conversion efficiency compared with conventional systems. This performance gain indicates that the new material converts a larger fraction of incident photons into hydrogen under illumination conditions.



Dye-sensitized photocatalysts combine a light-absorbing dye molecule with a catalytic material. In these systems, the dye acts as an antenna that captures visible light and transfers the excitation energy or charge to the catalyst surface, where hydrogen evolution reactions occur. The choice of metal complex in the dye strongly influences which wavelengths are absorbed and how effectively the system drives charge transfer.



“Dye-sensitized photocatalysts typically use ruthenium complexes as the photosensitizing dyes. However, ruthenium-based complexes typically absorb only shorter visible wavelengths up to 600 nm,” explains Maeda.



To extend absorption into longer wavelengths, the team replaced the ruthenium metal center in the complex with osmium. This substitution broadened the absorption profile, enabling the photocatalyst to use light with wavelengths beyond 600 nanometers and harvest a larger portion of the solar spectrum. The osmium-containing dye generates additional excited electrons that participate in hydrogen evolution, which contributes to the reported twofold efficiency increase.



The improvement is linked to the heavy-atom effect of osmium, which enhances singlet – triplet excitation in the metal complex. This low-energy electronic transition allows absorption of long-wavelength visible photons that ruthenium dyes do not effectively capture. By exploiting this effect, the new photocatalyst accesses a spectral region that is abundant in natural sunlight but previously underused in many dye-sensitized systems.



“In our efforts to extend the range of light absorption, osmium proved to be a key element in accessing wavelengths that ruthenium complexes could not use, leading to a 2-fold increase in hydrogen production efficiency,” says Maeda.



The osmium-based system shows improved performance even under weak or diffuse sunlight, indicating operation under real-world outdoor conditions. This behavior is important for technologies such as artificial photosynthesis and solar-energy conversion materials, which must function under variable irradiance and atmospheric scattering. Enhanced utilization of long-wavelength light could help stabilize hydrogen output across different weather and seasonal conditions.



The researchers note that further optimization of the metal complexes and photocatalyst architecture remains an active area of work. Their current results establish a design framework for next-generation dye-sensitized photocatalysts that exploit heavy-metal effects and singlet – triplet transitions to extend light absorption. This approach could support broader deployment of solar-driven hydrogen production and related sustainable energy systems.



Research Report:Charge Transfer Dynamics in Dye-Sensitized Photocatalysts Using Metal Complex Sensitizers with Long-Wavelength Visible Light Absorption Based on Singlet-Triplet Excitation


Related Links

Institute of Science Tokyo

All About Solar Energy at SolarDaily.com



Source link

Previous Post

Solar Panel Reuse Could Decide How Sustainable Solar Really Is

Next Post

The UK solar market collapsed one decade ago after losing incentives. Will the US do the same?

Next Post
The UK solar market collapsed one decade ago after losing incentives. Will the US do the same?

The UK solar market collapsed one decade ago after losing incentives. Will the US do the same?

Stay Connected test

  • 23.9k Followers
  • 99 Subscribers
  • Trending
  • Comments
  • Latest
AIKO vs. Trina Solar Panels

AIKO vs. Trina Solar Panels

15/05/2024
Solar Battery Covers | Cover My Inverter

Solar Battery Covers | Cover My Inverter

01/10/2023
ADT Solar to close 22 of 38 branches

ADT Solar to close 22 of 38 branches

02/11/2023
The 5 Best Solar Panels For Your Home or Business

The 5 Best Solar Panels For Your Home or Business

29/09/2023
The 5 Best Solar Panels For Your Home or Business

The 5 Best Solar Panels For Your Home or Business

0
The Truth About German Made Solar Panels – Don’t Fall For The Scam!

The Truth About German Made Solar Panels – Don’t Fall For The Scam!

0
Electric Element vs Heat Pump Calculator – MC Electrical

Electric Element vs Heat Pump Calculator – MC Electrical

0
AEE Solar opens new PV equipment distribution center in California

AEE Solar opens new PV equipment distribution center in California

0
The Middle Market is Taking Over

Northern Territory – The Off-Grid Frontier

09/01/2026
Comstock Metals receives approval to operate solar panel recycling facility in Nevada

Comstock Metals receives approval to operate solar panel recycling facility in Nevada

09/01/2026
3D printed solar cells bring color tuned power to windows and curved surfaces

3D printed solar cells bring color tuned power to windows and curved surfaces

09/01/2026
Balcony solar enters California, receives UL certification program

Balcony solar enters California, receives UL certification program

09/01/2026

Recent News

The Middle Market is Taking Over

Northern Territory – The Off-Grid Frontier

09/01/2026
Comstock Metals receives approval to operate solar panel recycling facility in Nevada

Comstock Metals receives approval to operate solar panel recycling facility in Nevada

09/01/2026
3D printed solar cells bring color tuned power to windows and curved surfaces

3D printed solar cells bring color tuned power to windows and curved surfaces

09/01/2026
Balcony solar enters California, receives UL certification program

Balcony solar enters California, receives UL certification program

09/01/2026
News Solartex

©2025 Solartex Daily News

Navigate Site

  • Contact Us
  • Home 1
  • Term of Use

Follow Us

No Result
View All Result
  • Contact Us
  • Home 1
  • Term of Use

©2025 Solartex Daily News